C$^*$-algebras from planar algebras I: Canonical C$^*$-algebras associated to a planar algebra

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A 2 -planar Algebras I

We give a diagrammatic representation of the A2-Temperley-Lieb algebra, and show that it is isomorphic to Wenzl’s representation of a Hecke algebra. Generalizing Jones’s notion of a planar algebra, we construct an A2-planar algebra which will capture the structure contained in the SU(3) ADE subfactors. We show that the subfactor for an ADE graph with a flat connection has a description as a fla...

متن کامل

A Class of C∗-algebras Generalizing Both Graph Algebras and Homeomorphism C∗-algebras I, Fundamental Results

We introduce a new class of C∗-algebras, which is a generalization of both graph algebras and homeomorphism C∗-algebras. This class is very large and also very tractable. We prove the so-called gauge-invariant uniqueness theorem and the Cuntz-Krieger uniqueness theorem, and compute the K-groups of our algebras.

متن کامل

Subfactors and Planar Algebras

An inclusion of II1 factors N ⊂ M with finite Jones index gives rise to a powerful set of invariants that can be approached successfully in a number of different ways. We describe Jones’ pictorial description of the standard invariant of a subfactor as a so-called planar algebra and show how this point of view leads to new structure results for subfactors. 2000 Mathematics Subject Classificatio...

متن کامل

Local tracial C*-algebras

‎Let $Omega$ be a class of unital‎ ‎$C^*$-algebras‎. ‎We introduce the notion of a local tracial $Omega$-algebra‎. ‎Let $A$ be an $alpha$-simple unital local tracial $Omega$-algebra‎. ‎Suppose that $alpha:Gto $Aut($A$) is an action of a finite group $G$ on $A$‎ ‎which has a certain non-simple tracial Rokhlin property‎. ‎Then the crossed product algebra‎ ‎$C^*(G,A,alpha)$ is a unital local traci...

متن کامل

A C∗-Algebra on Schur Algebras

In this paper, we show the relation between the Schur algebras Sr Λ,Σ(B) and S r′ Λ,Σ(B), where 1 ≤ r ′ < r < ∞. Then we set up the involution operator in these Schur algebras and show that with this involution operator there is only one C∗-algebra among these classes of Banach algebras. Furthermore, we show the equivalence of a condition on the Schur multiplier norm and the existence of C∗-alg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2016

ISSN: 0002-9947,1088-6850

DOI: 10.1090/tran/6781